

КА2 исп.08

Сетевой контроллер адресных устройств

Оглавление

1	Назначение7				
2	Технические характеристики				
3	Конструкция КА2 (базовый вариант)				
4	Комплект поставки	13			
5	Устройство и работа	13			
6	Подключение	14			
	6.1. Подключение питания	14			
	6.2. Подключение к БЦП	14			
	6.3. Подключение АШ	14			
	6.4. Назначение перемычек и светодиода на плате КА2	14			
7	Рекомендации по монтажу	15			
8	Маркировка	15			
9	Упаковка	15			
1	0 Хранение15				
1	1 Транспортирование	16			
12	2 Гарантии изготовителя	16			
1.	3 Сведения об изготовителе	16			
1	4 Сведения о рекламациях	16			
1: И	5 Приложение. Конструктивные особенности КА2 исполнение 1 (в корпусе IБП-12)				
	6 Родомини помумонто	20			

4 CULMA

Настоящее руководство по эксплуатации (далее РЭ) распространяется на сетевой контроллер адресных устройств КА2 исп.08 (далее КА2), входящий в состав интегрированной системы безопасности «Рубеж» на базе ППКОПУ «Р-08» (далее ИСБ), и предназначено для изучения принципа работы, правильного использования, технического обслуживания и соблюдения всех мер безопасности при эксплуатации.

Данное руководство распространяется на все дальнейшие модификации КА2а.

Внимание! Все работы, связанные с монтажом, наладкой и эксплуатацией настоящего устройства, должны осуществлять лица, имеющие допуск на обслуживание установок до 1000В, прошедшие инструктаж по технике безопасности и изучившие настоящий документ.

Внимание! При подключении КА2 к БЦП, ИБП, внешним устройствам соблюдать полярность подключения контактов.

Внимание! При подключении АУ к шлейфу сигнализации соблюдать полярность подключения контактов. Не допускается попадание напряжения питания постоянного (переменного) тока, превышающее значение 40 В на клеммы АШ КА2.

В руководстве по эксплуатации приняты следующие сокращения:

АМК адресный охранный магнитоконтактный извещатель

АОПИ адресный охранный пассивный ИК извещатель

АПИ адресный пожарный извещатель, включая: А2ДПИ исп.08,

АТИ исп.08 и т.п.

АР адресный расширитель безадресных ШС

АТИ адресно-аналоговый тепловой максимально-

дифференциальный пожарный извещатель

АУ адресное устройство

АШ адресный шлейф

БИС-мини блок индикации состояний мини

ИБП источник бесперебойного питания

ИСБ интегрированная система безопасности

ИК инфракрасный

ИР извещатель ручной, включая: ИР-П (пожарный); ИР-Охрана;

ИР-Пуск; ИР-Выход.

ИРС адресный охранный извещатель разбития стекла

ИУ исполнительное устройство (электромагнитный замок, тур-

никет)

МКЗ модуль (изолятора) короткого замыкания

MITT	U		
МПТ	адресныи модуль	выхолов пожарот	ишения включая:

МПТ10; МПТ4.

ОСЗ адресный оповещатель светозвуковой

ПЦН пульт централизованного наблюдения

СУ сетевое устройство – подключается к БЦП по линии связи с

интерфейсом RS-485

ШС шлейф сигнализации

6 CULWA

Термины и определения:

Идентификатор оборудования однозначно определяет экземоборудования пляр оборудования. В качестве идентификатора используется

тип и заводской серийный номер СУ, который указан в пас-

порте на СУ и на шильдике СУ.

Оборудование Системы безопасности – БЦП, сетевые устрой-

ства (КА2, КД2, СКШС и др.).

1 Назначение

КА2 (см. Рис. 1) предназначен для работы в составе ИСБ совместно с БЦП исп.8 и осуществляет контроль состояний и сбор информации с адресных устройств (АУ) с последующей ее передаче в БЦП.

КА2 содержит релейный выход и 2 токовых выхода для подключения оповещателей. Управление исполнительными устройствами АШ, выходами КА2, а также конфигурирование режимов работы КА2 осуществляется с БЦП. Для подключения вспомогательных устройств с нормально-замкнутыми контактами в КА2 предусмотрены два безадресных ШС.

КА2, являясь СУ, подключается к БЦП по линии связи "RS-485".

В качестве адресных устройств (АУ) в КА2 используются:

- пожарные извещатели А2ДПИ исп.08, АТИ исп.08, ИР-П исп.08;
- охранные извещатели АОПИ исп.08, АОПИ-Штора исп.08, ИРС исп.08, АМК исп.08;
- адресный вибрационный извещатель ABИ;
- оповещатель ОСЗ исп.08;
- адресный расширитель АРмини исп.08.

КА2 производится в двух вариантах исполнения – базовый вариант (в пластиковом корпусе) и вариант исп. 1 (в корпусе ИБП-12).

Конструктивные особенности КА2 исп. 1 приведены в Приложение. Конструктивные особенности КА2 исполнение 1 (в корпусе ИБП-12).

Электропитание КА2 (базовый вариант) осуществляется от внешнего источника питания постоянного тока с напряжением (9,0 ... 28,0) В.

В качестве источника питания постоянного тока можно использовать источники типа ИБП-1200/2400 (источник бесперебойного питания, далее ИБП, САКИ.425513.003); типа ИБП-1224 (САКИ.425513.203); типа ИБП-12/24 (САКИ.425513.004). Указанные ИБП запитываются от однофазной сети переменного тока частотой 50 Γ ц и напряжением 220 Γ B.

Электропитание КА2 (исп. 1) осуществляется от однофазной сети переменного тока частотой 50 Гц и напряжением 220 В.

По степени защищенности от воздействия окружающей среды в соответствии с ГОСТ 14254-96 КА2 в базовом варианте выпускается в двух вариантах исполнения, обеспечивающих степень защиты оболочек IP20 или IP65.

КА2 исп. 1 соответствует IP20.

По требованиям электромагнитной совместимости КА2 соответствует нормам ГОСТ Р 53325-2009. Степень жесткости – не ниже 2-й.

КА2 является восстанавливаемым и ремонтируемым устройством.

8 CNLWA

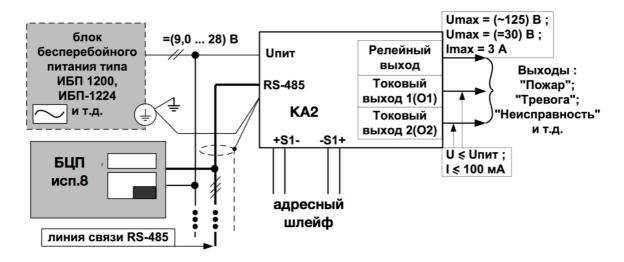


Рис. 1 Использование КА2 в составе ИСБ

2 Технические характеристики

Основные технические характеристики приведены в Табл. 1.

Табл. 1 Технические характеристики КА2

Nº	Параметр	Значение
1	Напряжение питания:	
	- КА2 (базовый вариант), постоянного тока, В	9,028
	- КА2 (исп. 1), переменного тока частотой 50 Гц, В	187 242
2	Время технической готовности КА2а после его включения, не более, с	5
3	Максимальный ток потребления (при напряжении питания 11 B), мА, не более, включая:	300
	- в дежурном режиме при 255 АУ	220
	- в режиме тревожного извещения (сработка оповещателей)	450
4	Интерфейсы связи с БЦП	RS-485
5	Максимальная протяженность линии связи с БЦП по линии связи RS-485, м	1200¹
6	Линия связи RS-485	экранированная
		(неэкранированная)
		витая пара с воз- вратным проводом.
7	Скорость передачи данных, бит/с	9600, 19200
8	Электрическая прочность изоляции между клеммами G (возвратный провод RS-485) и "-" (от источника пита-	

 $^{^{1}}$ Для увеличения длины линии связи используется БРЛ-03.

	ния), не более, В	100
9	Сопротивление изоляции между клеммами G (возвратный провод RS-485) и "-" (от источника питания), не менее, МОм	1
10	Структура адресного шлейфа	"кольцевая" ² ("радиальная" – два "луча")
11	Максимальное количество адресных устройств в "кольцевом" шлейфе	255
12	Максимальная длина "кольцевого" шлейфа, м, не более	1200 ³
13	Максимальное количество адресных устройств в "радиальном" шлейфе	510 (по 255 в каж- дом "луче"
14	Максимальное потребление устройств адресного шлейфа (оба луча, максимум, в режиме оповещения), мА	140
15	Максимальное потребление устройств адресного шлейфа (каждый луч), мА:	
	- в дежурном режиме 40 мА;	30
	- в дежурном режиме 100 мA ;	80
	- в режиме выдачи тревожного извещения (оповещения)	80
16	Количество релейных выходов (ПЦН)	1
17	Тип контактов релейного выхода	Переключающий
18	Максимальное напряжение, коммутируемое релейным выходом, В:	
	- переменного тока;	125
	- постоянного тока.	30
19	Максимальный ток, коммутируемый релейным выходом, А:	
	- при активной ("резистивной") нагрузке;	3
	- при индуктивной нагрузке (L/R=7msec).	0,3
20	Количество токовых выходов (ПЦН)	2
21	Контроль линии подключения нагрузки к токовому выходу на обрыв	есть

_

² Рекомендуемая

 $^{^{3}}$ Для более точного расчета длины – необходимо воспользоваться калькулятором "Rubicalc".

22	Контроль линии подключения нагрузки к токовому выходу на короткое замыкание	есть
23	Максимальное напряжение токового выхода при отсутствии тревожного извещения, В	0,01
24	Напряжение токового выхода при поступлении тревожного извещения, В (зависит от напряжения питания)	(9,028)
25	Максимальный выходной ток, мА	100
26	Количество безадресных ШС (без контроля "Обрыва")	2
27	Максимальное напряжение безадресного ШС, В, не более	5
28	Максимальная длина безадресного ШС, м, не более	10
29	Диапазон рабочих температур, °С	+5+55
30	Рабочий диапазон значений относительной влажности воздуха (максимальное значение соответствует температуре +25°C, без конденсации влаги):	
	- для KA2 в исполнении IP20(базовый вари- ант и исп.1);	090%
	 для КА2 в исполнении IP65 (базовый вариант). 	093%
31	Габаритные размеры, мм:	
	 для КА2 в исполнении IP20(базовый вариант); 	170x112x35
	 для КА2 в исполнении IP65(базовый вариант); 	171x145x55
	- для КА2 исп.1.	254 x 245 x 80
32	Масса, кг, не более - для КА2 в исполнении IP20(базовый вариант); - для КА2 в исполнении IP65(базовый вариант); - для КА2 исп.1.	0,3 0,4 3,5

3 Конструкция КА2 (базовый вариант)

В настоящем разделе приводится описание KA2 базового варианта исполнения (IP20 и IP65), особенности конструкции KA2 исп. 1 – см. Приложение. Конструктивные особенности KA2 исполнение 1 (в корпусе ИБП-12).

КА2 базового варианта исполнения конструктивно выполнен в пластмассовом разъемном корпусе (Рис. 2, Рис. 3, Рис. 4) и состоит из крышки и основания корпуса. На печатной плате размещены радиоэлементы, включая: индикатор работы, микропереключатель датчика вскрытия корпуса и клеммы для подключения.

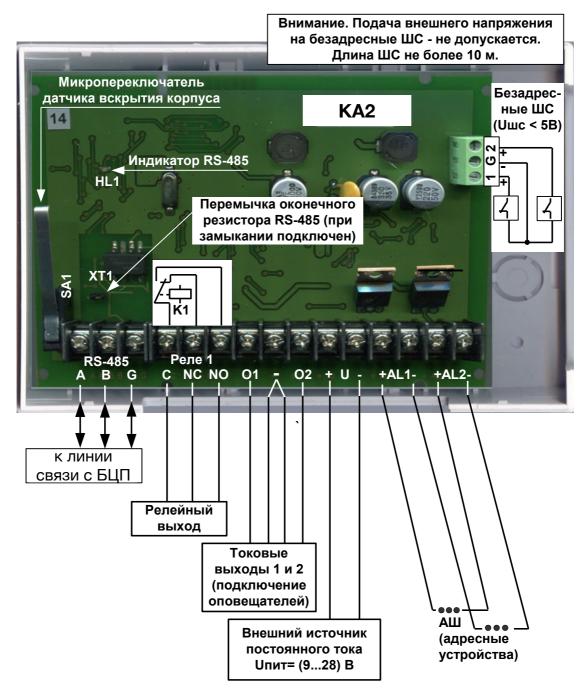


Рис. 2 Внешний вид КА2 (базовый вариант, исп. IP20). Клеммы подключения.

Корпус КА2 в зависимости от исполнения обеспечивает степень защиты IP20, IP65.

Плата устройства закреплена на основании корпуса с помощью 2 фиксаторов – в исполнении IP20 или 4-мя винтами – в исполнении IP65. Для вскрытия корпуса KA2 необходимо аккуратно освободить из защелок крышки корпуса два выступа в нижней части корпуса, после чего освободить верхнюю пару и отсоединить основание и крышку корпуса (IP20).

В случае необходимости извлечения всей платы – следует отогнуть фиксаторы платы и переместить ее вверх (IP20).

В исполнении IP65 для вскрытия корпуса и извлечения платы необходимо вывернуть соответственно 4 винта крышки и платы.

Процесс сборки устройства – производить в обратном порядке.

Для закрепления КА2 на вертикальной поверхности основания корпуса предусмотрены отверстия крепления (Рис. 3, Рис. 4).

Габаритные и присоединительные размеры в вариантах исполнений IP20, IP65 показаны на Рис. 3, Рис. 4.

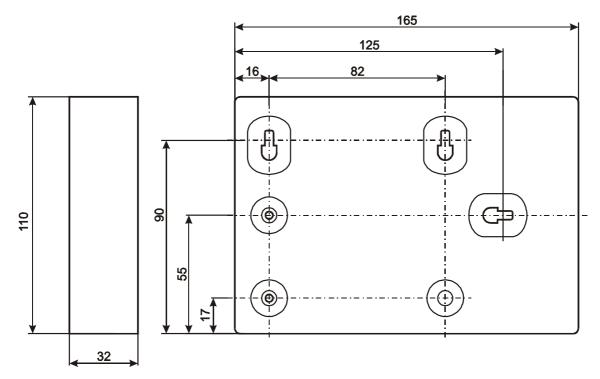


Рис. 3 Габаритные и присоединительные размеры КА2, базовый вариант, исп. IP20

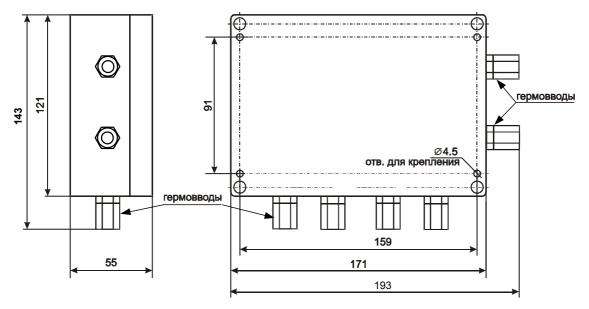


Рис. 4 Габаритные и присоединительные размеры КА2, базовый вариант, исп. IP65

Количество и расположение гермовводов (Рис. 4) может быть изменено.

4 Комплект поставки

№ п/п	Обозначение	Наименование	Кол-во	3а- вод- ской №	Примеча- ние
1	САКИ.425661.158 САКИ.425661.158 -01	Сетевой контроллер адресных устройств КА2 базовый вариант, исп. IP20/IP65 или КА2 исп. 1	1 шт.		
2	САКИ.425661.158 РЭ	Руководство по эксплуатации	1 шт.*		
3	САКИ.425661.158 ПС	Паспорт	1 шт.		

Примечание *) По требованию заказчика.

5 Устройство и работа

Основное управление, а также конфигурирование режимов работы KA2 осуществляется с БЦП исп.8, связь с которым осуществляется по линии связи с интерфейсом "RS-485". Если KA2 является последним в линии связи "RS-485" – необходимо подключить оконечный резистор, замкнув перемычку XT1 (см. Рис. 2).

КА2 позволяет подключать в АШ адресные устройства охранной и пожарной сигнализации. Возможно применение АШ кольцевой (рекомендуемый вариант) и радиальной (два "луча") структур. При этом возможно ответвление как от кольцевого АШ, так и от радиального АШ при соблюдении ограничения на общее количество АУ. При определении общей длины кабеля АШ необходимо пользоваться программой "Rubicalc".

Кабельные линии адресного шлейфа контролируются на обрыв и короткое замыкание. При обрыве каждая половина шлейфа независимо контролируется на короткое замыкание.

Обрыв адресного шлейфа KA2 начинает распознавать спустя 3 минуты после старта. Время дается для старта модулей МК3.

Микропереключатель KA2 служит датчиком вскрытия корпуса — находится в разомкнутом состоянии при открытой крышке, в этом случае на БЦП передается сигнал "вскрытие корпуса".

КА2 содержит один релейный выход и два токовых выхода, срабатывающих при поступлении тревожных извещений "Пожар", "Тревога", "Неисправность" и т.д. Конфигурирование выходов, включая режимы их работы, производится с БЦП.

К токовым выходам в качестве нагрузки рекомендуется подключать оповещатели.

Кабельные линии оповещателей контролируются малым током (0.35mA) на короткое замыкание и обрыв.

Для большинства звуковых оповещателей и световых оповещателей состоящих из одного светодиода подключение дополнительных деталей обеспечивающих обнаружение короткого замыкания и обрыва не требуется.

Для контроля оповещателя с низким сопротивлением (например: лампа накаливания), необходимо последовательно с ним в цепь включать диод, рассчитанный на ток не менее 100мА. Рекомендуется также включать в цепь диод, когда при нормально подключенном оповещателе КА2 показывает состояние оповещателя - «короткое замыкание».

Для световых и светозвуковых с множеством светодиодных индикаторов, а также в других случаях когда КА2 показывает состояние оповещателя «Обрыв» - необходимо подключить параллельно резистор 5-20ком.

6 Подключение

Подключение КА2 показаны на Рис. 1, Рис. 2.

6.1. Подключение питания

Подключение производить в соответствии с руководством по эксплуатации ИБП.

6.2. Подключение к БЦП

КА2 подключается к БЦП по линии связи RS-485 (рекомендации по прокладке линии - в соответствии с руководством по эксплуатации на КА2 БЦП).

Линия связи подключается к клеммам KA2 **A, B, G** (RS-485). Клемма **G** является возвратным проводом линии связи RS-485 и изолирована от клеммы "-" источника питания (см. Табл. 1). Перемычка **XT1** должна быть **замкнута**, если KA2 является оконечным СУ в линии связи. Светодиод **HL1** «**RS-485**» при установлении связи переходит в режим прерывистого свечения.

6.3. Подключение АШ

Подключение производится к клеммам "+S" и "S-" в зависимости от выбранной структуры $A \coprod -$ кольцевой или радиальной. При подключении A Y необходимо предусмотреть M K 3 - из расчета 1 M K 3 на ~ 20 A Y (см. Puc. 1)

6.4. Назначение перемычек и светодиода на плате КА2

Назначение перемычек приводится – в Табл. 2; светодиодов индикации – в Табл. 3.

Табл. 2 Назначение перемычек на плате КА2

Обозначение	Назначение
XT1	Подключение оконечного резистора линии связи (при установленной перемычке) — если устройство является последним СУ.

Табл. 3 Назначение светодиодов на плате КА2

Обозначение Назначение

HL1 («RS-485»)	Индикация наличия связи по RS-485.

7 Рекомендации по монтажу

Монтаж КА2 и всех соединительных линий производится в соответствии с настоящим документом, а также со схемами электрических подключений, приведенных в соответствующих эксплуатационных документах на блоки и устройства, входящие в состав БЦП.

В качестве экранированного кабеля рекомендуется применять кабель марки КСПЭВ, неэкранированный – кабель марки КСПВ. Сечение провода в кабеле – не меньше 0,5 мм².

Подключение экранов кабелей линий связи и питания к защитному заземлению необходимо осуществлять в одной точке.

Кабеля питания и линии связи с БЦП при монтаже — пропускаются через прорезь в основании корпуса — в варианте исполнения IP20 или через соответствующие гермовводы в варианте исполнения IP65, при этом следует затянуть гайки гермовводов для обеспечения степени защиты корпуса. Максимальный диаметр кабеля, проходящего через гермоввод варианта исполнения IP65-7 мм.

Все работы, связанные с монтажом, наладкой и эксплуатацией настоящего устройства, должны осуществлять лица, имеющие допуск на обслуживание установок до 1000 В, прошедшие инструктаж по технике безопасности и изучившие настоящий документ.

В процессе ремонта при проверке режимов элементов не допускать соприкосновения с токонесущими элементами блоков питания, так как в линиях источников питания может присутствовать опасное напряжение. Подключение, монтаж и замена деталей КА2 должны проводиться при обесточенном устройстве.

8 Маркировка

Маркировка KA2 соответствует конструкторской документации и техническим условиям CAKИ.425513.101 ТУ.

На шильдике КА2 нанесены:

- товарный знак предприятия изготовителя;
- условное обозначение устройства;
- исполнение;
- заводской номер;
- месяц и год выпуска.

Заводской номер является сетевым адресом КА2.

9 Упаковка

Упаковка КА2 соответствует САКИ.425513.101 ТУ.

10 Хранение

В помещениях для хранения КА2 не должно быть пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

16 CULMA

Хранение КА2 в потребительской таре должно соответствовать условиям ГОСТ 15150.

11 Транспортирование

Транспортирование упакованных KA2 может производиться в любых крытых транспортных средствах. При транспортировании, перегрузке KA2 должны оберегаться от ударов, толчков и воздействия влаги.

Условия транспортирования и хранения должны соответствовать ГОСТ 15150.

После транспортирования КА2 перед включением должен быть выдержан в нормальных условиях в течение не менее 24 ч.

12 Гарантии изготовителя

Изготовитель гарантирует соответствие КА2 требованиям технических условий при соблюдении потребителем правил транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации 18 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев со дня отгрузки.

13 Сведения об изготовителе

СИГМА, 105173, г. Москва, ул. 9-мая, 126

тел.: (495) 542-41-70, факс: (495) 542-41-80

E-mail: общие вопросы - info@sigma-is.ru;

коммерческий отдел - sale@sigma-is.ru;

техническая поддержка - support@sigma-is.ru.

14 Сведения о рекламациях

При отказе КА2 в работе и обнаружении неисправностей должен быть составлен рекламационный акт о выявленных дефектах и неисправностях.

КА2 вместе с паспортом и рекламационным актом возвращается предприятию-изготовителю для ремонта или замены.

Примечание. Выход КА2 из строя в результате несоблюдения правил монтажа, технического обслуживания и эксплуатации не является основанием для рекламации и бесплатного ремонта.

Внимание! Претензии без паспорта КА2 и рекламационного акта предприятие-изготовитель не принимает.

15 Приложение. Конструктивные особенности КА2 исполнение 1 (в корпусе ИБП-12)

КА2 конструктивно выполнен в металлическом корпусе ИБП-12. Плата КА2 размещена в отсеке размещения аккумуляторной батареи. Основные характеристики ИБП-12 приведены в Табл. 4. Внешний вид, габаритные и присоединительные размеры – см. Рис. 5, Рис. 6.

Подробно характеристики и работа ИБП-12 - см. "Источник вторичного электропитания ИБП-12 / ИБП-24.Руководство по эксплуатации" (САКИ.425513.004 РЭ).

В комплект поставки ИБП-12 входят:

- паспорт на ИБП-12;
- комплект соединительных проводов для подключения батареи аккумуляторной (БА);
- вставка плавкая 5x20 5 A (возможна замена на 6,3 A);
- вставка плавкая 5х20 2 А.

Табл. 4 Основные характеристики ИБП-12

Nº	Параметр	Значение
1	Мощность, потребляемая от сети переменного тока при максимальной нагрузке, не более, Вт	60
2	Выходное напряжение постоянного тока, В:	
	- при наличии напряжения сети переменного тока;	13,013,6
	- при пропадании напряжения сети переменного тока	11,013,5
3	Рабочий ток каждого выхода (Uвых1 или Uвых2), не более, А	1,5
4	Максимальный ток заряда аккумуляторов, А	0,5
5	Количество БА	1
6	Номинальное напряжение аккумуляторной батареи, В	12
7	Емкость аккумуляторов, А час	9 или 7,2

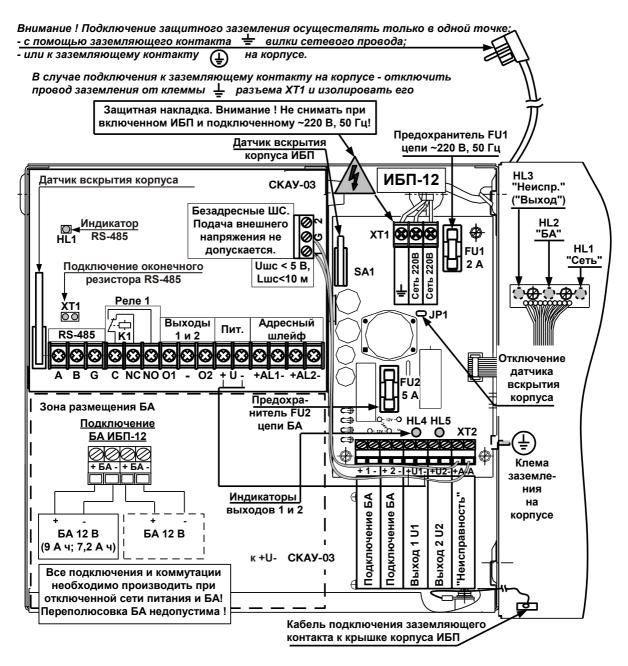


Рис. 5 Внешний вид КА2 (исп. 1)

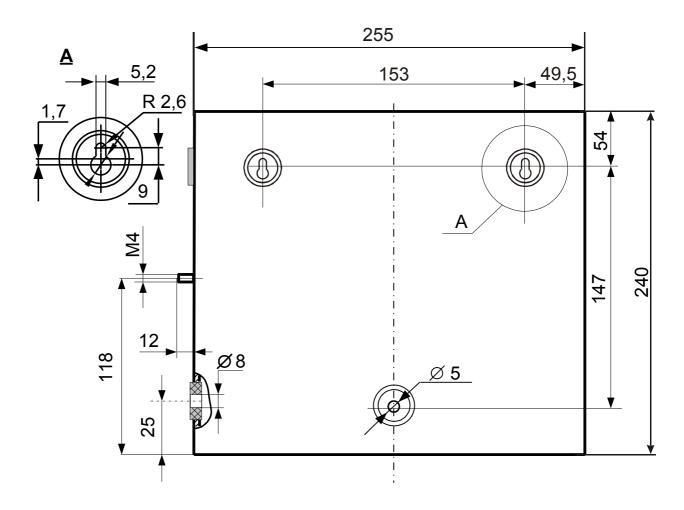


Рис. 6 Габаритные и присоединительные размеры КА2 (исп. 1)

20 CUΓMA

16 Редакции документа

Редакция	Дата	Описание
3	21.10.2013	Добавлен вариант КА2 исп. 1 (в корпусе ИБП-12, см. Приложение. Конструктивные особенности КА2 исполнение 1 (в корпусе ИБП-12)).
4	19.11.2013	Изменена плата КА2 (см. Рис. 2, Рис. 5). Обеспечена изоляция между клеммами G (возвратный провод RS-485) и "-" (от источника питания) - Табл. 1.
5	15.10.2014	Уточнены поддерживаемые адресные устройства.